Малогабаритный датчик переменного тока. Автомобильный датчик тока положительной шины питания Бесконтактный измеритель тока своими руками

Для обустройства электроснабжения гаража очень удобно знать ток, который потребляется тем или иным устройством, включаемым в эту сеть. Спектр этих устройств достаточно широк и увеличивается постоянно.: дрель, точило, болгарка, нагреватели, сварочные аппараты, ЗУ, промышленный фен, да и много ещё чего….

Для измерения переменного тока, как известно, в качестве собственно токового датчика, как правило, применяют трансформатор тока. Этот трансформатор, в общем похож на обычный понижающий, включенный как бы «наоборот», т.е. его первичная обмотка –это один или несколько витков (или шина) пропущенные через сердечник - магнитопровод, а вторичная представляет собой катушку с большим количеством витков тонкого провода, располагаемую на этом же магнитопроводе (рис1).

Однако, промышленные трансформаторы тока достаточно дороги, громоздки и зачастую рассчитаны на измерение сотен ампер. Трансформатор тока, рассчитанный на диапазон бытовой сети, встретишь в продаже нечасто. Именно по этой причине родилась идея использовать для этой цели электромагнитное реле постоянного/переменного тока, без какого либо использования контактной группы такого реле. В самом деле, любое реле уже содержит катушку с большим количеством витков тонкого провода и единственное, что необходимо для превращения его в трансформатор – это обеспечить вокруг катушки наличие магнитопровода с минимумом воздушных зазоров. Кроме этого, конечно, для такой конструкции необходимо достаточно места, чтобы пропустить первичную обмотку, представляющую вводную сеть.На снимке показан такой датчик, изготовленный из реле типа РЭС22 на 24 В постоянного тока. Это реле содержит обмотку сопротивлением примерно 650 ом. Скорее всего, подобное применение могут найти и многие реле других типов и в том числе остатки неисправных магнитных пускателей и т.п. Для обеспечения магнитопровода якорь реле механически блокируется при максимальном сближении с сердечником. Реле, как бы постоянно находится в сработке. Далее, вокруг катушки делается виток первичной обмотки (на снимке это тройной провод синего цвета).

Собственно, на этом датчик тока готов, без лишней суеты с наматыванием провода на катушку. Конечно, данное устройство трудно считать полноправным трансформатором и ввиду незначительной площади поперечного сечения вновь полученного магнитопровода и, возможно, ввиду отличия характеристики его намагничивания от идеальной. Однако все это оказывается менее важно ввиду того, что мощность такого «трансформатора» нам нужна минимальна и необходима лишь для того, чтобы обеспечить пропорциональное (желательно линейное) отклонение стрелочного индикатора магнитоэлектрической системы в зависимости от тока в первичной обмотке.

Возможная схема сопряжения датчика тока с таким индикатором изображена на схеме (рис.2). Она довольно проста и напоминает схему детекторного приемника. Выпрямительный диод (Д9Б) – германиевый и выбран ввиду малости падения на нем напряжения (около 0,3 В). От этого параметра диода будет зависеть порог минимального значения тока, который способен определить данный датчик. В этой связи, для этого лучше использовать так называемые детекторные диоды с малым падением напряжения, например ГД507 и подобные. Пара кремниевых диодов кд521в установлена в целях защиты стрелочного прибора от перегрузки, которая возможна при значительных бросках тока, вызванных, например, коротким замыканием внутри сети, включением мощных трансформаторов или сварочника. Это весьма обычный в таких случаях прием. Следует заметить, ч то такая простейшая схема имеет тот недостаток что абсолютно может не «увидеть» нагрузку в виде тока одной полярности, как например, нагреватель или ТЭН, подключенный через выпрямительный диод. В этих случаях применяют несколько «усложненную» схему, например, в виде выпрямителя с удвоением напряжения (рис.3).

При проведении измерений в автомобильной электрике часто приходится снимать осциллограммы величин тока. Другими словами, не просто измерять, а подробно изучать. Классически для таких целей используются токовые трансформаторы или резисторы. Однако последние имеют частотные ограничения и влияют на изучаемую схему. Токовой датчик, основанный на регуляторе Холла, призван решить эту проблему.

Все бы хорошо, но стоят такие датчики недешево. Если же суметь собрать такой вариант своими руками, то можно неплохо сэкономить. Чтобы суметь изготовить модель собственного производства, можно использовать несколько эффективных схем.

Схема на микросхеме 711

ВНИМАНИЕ! Найден совершенно простой способ сократить расход топлива! Не верите? Автомеханик с 15-летним стажем тоже не верил, пока не попробовал. А теперь он экономит на бензине 35 000 рублей в год!

ACS 711 – тот самый чип, благодаря которому удастся изготовить токовый датчик или ТД на основе ДХ (датчика Холла). ЧД такого датчика будет равен почти 100 кГц, что будет вполне эффективно для проведения измерений.

Микросхема этого типа имеет выход, который интегрируется с усилителем. Последний, в свою очередь, за счет своей оперативности способен увеличивать возможности схемы вплоть до 1 А/В.

Что касается питания, то напряжение на усилитель поступает за счет применения внутреннего источника 2-полярного типа. Это может быть вариант NSD10 либо какой-нибудь другой. Сама микросхема питается уже посредством стабилизатора, имеющего выход с напряжением 3,3 В.

Проверенный «бюджетный» вариант

Вот, что надо предпринять для изготовления такого варианта:

  • в ферритовом кольце пропилить канавку по толщине корпуса;
  • на эпоксидный клей посадить МС;
  • сделать определенное количество витков на кольце (кол-во витков будет зависеть от конкретного напряжения);
  • в итоге получится бесконтактный вариант реле, функционирующий на электромагнитной основе.

Точность срабатывания такого ДТ и регулярность достаточно высокая. Единственным недостатком схемы можно назвать кол-во витков, определяемых чисто эмпирически. На самом деле расчетов конкретного типа нигде и нет. Приходится определять число витков для конкретного сердечника.

Готовый ДТ MLX91206

Кумулятивная схема, где используется тончайший слой ферромагнитоструктуры или ИМС. Последний выступает в качестве коммутатора магнитполя, обеспечивая тем самым, высокое усиление и наладку эквивалентности шумосигнала. Более актуален этот вариант ДТ для измерения постоянно-переменного напряжения до 90 кгц с изоляцией омического свойства, что характеризуется незначительными внедряемыми потерями и малым временем отклика.

Кроме того, из преимуществ можно выделить простоту сборки и маленькие размеры фюзеляжа.

ДТ MLX91206 – это регулятор, который пока удовлетворяет спрос в автопромышленности. Помимо этого, ДТ этого типа применяется в других источниках питания: для защиты от перегрузки, в двигательных системах и т.д.

Чаще всего ДТ на микросхеме MLX91206 применяется в гибридных автомобильных системах, как автоинверторы.

Интересно и то, что датчик этот оснащен качественной защитной системой от перенапряжения, что позволяет использовать его в качестве отдельного регулятора, интегрированного к кабелю.

Принцип функционирования датчика подобного типа основан на преобразовании магнитполя, возникаемого от токов, проходящих сквозь проводник. Схема не имеет верхнего ограничения измеряемого уровня напряжения, так как выход и его параметры в данном случае зависят от проводникового размера и непосредственной дистанции от ДТ.

Что касается отличий этого типа ДТ от аналогичных:

  1. Скорость аналогового выхода, которая выше (этому способствует ЦАП 12 бит).
  2. Наличие программируемого переключателя.
  3. Надежная защита от переплюсовки и перенапряжения.
  4. Выход ШИМ с разрешением АЦП 12 бит.
  5. Большущая полоса пропускания, параметры которой равны 90 кГц и многое другое.

Одним словом, ДТ этого типа является компактным и эффективным датчиком, изготовленным по технологии Триасис Холл. Технология подобного типа считается классической и традиционной, она чувствительна к плотности потока, который приложен четко параллельно поверхности.

Измерения, которые удается провести с помощью готового датчика, изготовленного по технологии Триасис Холл, делятся на измерения небольшого напряжения до 2 А, тока средн. величины до 30 А и токов до 600 А (больших).

Рассмотрим подробнее возможности этих измерений.

  • Малые токи измеряются с помощью датчика за счет повышения параметров магнитполя через катушку вокруг ДТ. В данном случае чувствительность измерения будет обусловлена габаритами катушки и кол-вами витков.
  • Токи в диапазоне до 30 А или средние токи измеряются с учетом допустимости напряжения и общей рассеиваемости мощности дорожки. Последние обязаны быть довольно толстыми и широкими, иначе непрерывной обработки среднего тока достичь не удастся.
  • Наконец, измерение больших токов – это использование медных и толстых дорожек, способных приводить напряжение на обратной стороне печатной платы.

ДТ на эффекте Холла: общий взгляд

Что такое эффект Холла? Как известно, это явление основано на том, что если поместить в магнитное поле какой-либо полупроводник прямоугольного типа, и пропустить сквозь него напряжение, то на краях материала обязательно возникнет электрическая сила, направленная перпендикулярно магнитному полю.

Именно по этой причине магнитный датчик принято называть ДХ в честь ученого Холла, которому удалось первым раскрыть этот самый эффект.

Что дает этот самый эффект в автомобильной электрике? Все просто. Когда к ДХ подносится напряжение, то на краях пластины (она бывает расположена внутри ДХ) возникает разность потенциалов, и дается значение, пропорциональное СМП (силе магнитного поля).

Таким образом, в автомобильной сфере удалось использовать бесконтактные элементы, значительно лучше показавшие себя на практике, чем детали, оснащенные контактными группами. Последние приходилось регулярно чистить, ремонтировать, менять.

Бесконтактные ДХ успешно контролируют, например, скорость вращения валов, широко используются в системах зажигания, применимы в тахометрах и АБС.

Для измерений силы тока в различных электрических цепях с помощью микросхемы АС712 это удается сделать. Эффект Холла в данном случае оказывает неоспоримую помощь. Таким образом, удается изготавливать датчик или регулятор электрического тока на ДХ.

Подобные датчики позволят измерять силу не только постоянного, но и переменного тока, получать значения в млА.

Как правило, модуль с микросхемой АС712 функционирует строго от 5В, зато позволяет измерять максимальный уровень тока до 5 А. При этом напряжение должно быть выставлено в пределах значений от 2 квт.

Вообще, ДТ применяются повсеместно в электротехнике для создания коммуникаций обратной связи. В зависимости от конкретного места функционирования, ДТ классифицируются на несколько видов. Известны резистивные ДТ, токово-трансформаторные, ну и конечно, ДТ на эффекте Холла.

Нас интересуют ДТ на эффекте Холла. Они еще называются открытыми регуляторами или приборами с выходным сигналом по напряжению. Предназначение их: бесконтактным способом измерять переменный, постоянный и импульсный ток в диапазонах от плюс/минус 57 до плюс/минус 950 Ампер при в.о. 3 млс.

Выходное напряжение ДТ бывает четко соизмерно вычисляемым параметрам тока. 0-е значение напряжения равняется половинной величине тока питания. Тем самым, диапазон выхода тока составляет 0,25-0,75 В.

Настройку чувствительности ДТ легко провести методом трансформации числа витков тестируемого проводника по кругу магнитопровода регулятора.

Корпус ДТ обязан быть устроен из прочного РВТ пластика.

РВТ пластик – это пластиковый материал, получаемый посредством однородного сваривания.

Что касается жестких выводов корпуса ДТ, то их бывает 3. Предназначены они для пайки на плату.

Цепь выхода ДТ – пара комплектарно-биополярных транзисторов. Другими словами, это не что иное, как полупроводниковый прибор, в котором сформировано два перехода, а перенос заряда осуществляется носителями 2-х полярностей или иначе – электронами и квазичастицами.

ДТ на эффекте Холла бывают также оригинального и неоригинального производства. Первые выделяются привлекательным дизайном, надежны и способны давать высочайшую точность показаний. А вот ДТ неоригинального производства таких параметров не имеют, хотя тоже способны предоставить свои преимущества. К ним относится разборный корпус и низкая стоимость.

Внимание. Если ДТ легко разбирается путем вывинчивания 4-х винтиков, то перед вами не оригинальный прибор.

Разборка корпуса оригинального ДТ обязательно приведет к неудаче, так как они изготовлены в закрытом варианте. Конечно, можно постараться и добраться до внутренностей, однако это обязательно приводит к поломкам. Корпус таких приборов запаян со всех сторон, по всем стыкам.

Для сравнения внутренностей заводского ДТ и последующего собирания самодельной схемы рекомендуется воспользоваться, как и было написано выше, неоригинальным устройством. Например, пусть это будет китайский ДСТ-500. Он легко разбирается, схема срисовывается на ура, так как она простая, не содержит сложных заковырок.

Что касается функционирования, то она одинакова во всех типах ДТ:

  • силовой проводник под напряжением идет через магнитопровод;
  • образуется циклотронное поле;
  • ток идет по выравнивающей обмотке магнитопровода, чтобы стабилизировать поле;
  • компенсируемое напряжение должно быть ровно пропорционально напряжению в сил. проводнике.

Помимо этого, для компенсирования магнитпровода датчика, требуется измерять величинные и знаковые значения ДТ. Для этих целей в магнитопроводе следует прорезать отверстие, через которое, собственно говоря, и вставляется датчик Холла. Сигнал прибора будет форсироваться, снабжать мощностный эндотрон, выход которого интегрирован со стабилизирующей обмоткой.

Данным образом, основной целью подобной схемы станет пропуск такой доли напряжения сквозь обмотку, которая бы воздействовала на магнитное поле так, чтобы в разрыве магнитопровода значение приближалось к 0.

В целой зоне измеряемого напряжения при этом сохранится ювелирная точность КПД соизмеримости. Для измерения точного напряжения компенс. обмотки используется низкоомный резистор-прецизион. Величина падения тока на таком резисторе будет равна значению напряжения в силовой цепи.

ДТ подобного типа можно легко изготовить своими силами. Потребность в таких регуляторах постоянно растет, стоят они, как и говорилось, недешево.

Датчик Холла в конкретном случае желательно использовать специфический, бескорпусный. Установить его можно на узкую полоску тонкого фольго-стеклотекстолита. Под ним должно быть предусмотрено посадочное углубление, где он будет посажен на эпоксидный клей очень плотно.

Внимание. Толщина полоски текстолита в 0,8 мм будет считаться нормальной, так как зайдет в зазор без излишнего трения о стенки и без эффекта болтания.

ДТ — эталонная установка для вычисления напряжения высоковольтажного пульсара питания. Например, ток, потребляемый стартером или генератором. И с помощью датчика Холла осуществить это удается, используя всего лишь одну микросхему.

Напоследок интересное видео про датчик тока на основе датчика холла

Всем привет!

Пожалуй, стоит представиться немного - я обычный инженер-схемотехник, который интересуется также программированием и некоторыми другими областями электроники: ЦОС, ПЛИС, радиосвязь и некоторые другие. В последнее время с головой погрузился в SDR-приемники. Первую свою статью (надеюсь, не последнюю) я сначала хотел посвятить какой-то более серьезной теме, но для многих она станет лишь чтивом и не принесет пользы. Поэтому тема выбрана узкоспециализированная и исключительно прикладная. Также хочу отметить, что, наверное, все статьи и вопросы в них будут рассматриваться больше со стороны схемотехника, а не программиста или кого-либо еще. Ну что же - поехали!

Не так давно у меня заказывали проектирование «Система мониторинга энергоснабжения жилого дома», заказчик занимается строительством загородных домов, так что кто-то из вас, возможно, даже уже видел мое устройство. Данный девайс измерял токи потребления на каждой вводной фазе и напряжение, попутно пересылая данные по радиоканалу уже установленной системе «Умный дом» + умел вырубать пускатель на вводе в дом. Но разговор сегодня пойдет не о нем, а о его небольшой, но очень важной составляющей - датчике тока. И как вы уже поняли из названия статьи, это будут «бесконтактные» датчики тока от компании Allegro - ACS758-100 .
________________________________________________________________________________________________________________________

Даташит, на датчик о котором я буду рассказывать, можно посмотреть . Как несложно догадаться, цифра «100» в конце маркировки - это предельный ток, который датчик может измерить. Скажу честно - есть у меня сомнения по этому поводу, мне кажется, выводы просто не выдержат 200А долговременно, хотя для измерения пускового тока вполне подойдет. В моем устройстве датчик на 100А без проблем пропускает через себя постоянно не менее 35А + бывают пики потребления до 60А.

Рисунок 1 - Внешний вид датчика ACS758-100(50/200)

Перед тем, как перейду к основной части статьи, я предлагаю вам ознакомиться с двумя источниками. Если у вас есть базовые знания по электронике, то они будут избыточными и смело пропускайте этот абзац. Остальным же советую пробежаться для общего развития и понимания:

1) Эффект Холла. Явление и принцип работы
2) Современные датчики тока
________________________________________________________________________________________________________________________

Ну что же, начнем с самого важного, а именно с маркировки. Покупаю комплектующие в 90% случаев на www.digikey.com . В Россию компоненты приезжают через 5-6 дней, на сайте есть пожалуй все, также очень удобный параметрический поиск и документация. Так что полный список датчиков семейства можно посмотреть там по запросу "ACS758 ". Датчики мои были куплены там же - ACS758LCB-100B .

Внутри даташита по маркировке все расписано, но я все равно обращу внимание на ключевой момент "100В ":

1) 100 - это предел измерения в амперах, то есть мой датчик умеет измерять до 100А;
2) "В " - вот на эту букву стоит обратить внимание особо, вместо нее может быть также буква "U ". Датчик с буквой B умеет измерять переменный ток, а соответственно и постоянный. Датчик с буквой U умеет измерять только постоянный ток.

Также в начале даташита есть отличная табличка на данную тему:


Рисунок 2 - Типы датчиков тока семейства ACS758

Также одной из важнейших причин использования подобного датчика стала - гальваническая развязка . Силовые выводы 4 и 5 не связаны электрически с выводами 1,2,3. В данном датчике связь лишь в виде наведенного поля.

Еще в данной таблицы появился еще один важный параметр - зависимости выходного напряжения от тока. Прелесть данного типа датчиков в том, что у них выход напряжения, а не тока как у классических трансформаторов тока, что очень удобно. Например, выход датчика можно подсоединить напрямую ко входу АЦП микроконтроллера и снимать показания.

У моего датчика данное значение равно 20 мВ/А . Это означает, что при протекании тока 1А через выводы 4-5 датчика напряжение на его выходе увеличится на 20 мВ . Думаю логика ясна.

Следующий момент, какое же напряжение будет на выходе? Учитывая, что питание «человеческое», то есть однополярное, то при измерение переменного тока должна быть «точка отсчета». В данном датчике эта точка отсчета равна 1/2 питания (Vcc). Такое решение часто бывает и это удобно. При протекании тока в одну сторону на выходе будет "1/2 Vcc + I*0.02V ", в другом полупериоде, когда ток протекает в обратную сторону напряжение на выходе будет уже "1/2 Vcc - I*0.02V ". На выходе мы получаем синусоиду, где «ноль» это 1/2Vcc . Если же мы измеряем постоянный ток, то на выходе у нас будет "1/2 Vcc + I*0.02V ", потом при обработке данных на АЦП просто вычитаем постоянную составляющую 1/2 Vcc и работаем с истинными данными, то есть с остатком I*0.02V .

Теперь пришло время проверить на практике то, что я описал выше, а вернее вычитал в даташите. Чтобы поработать с датчиком и проверить его возможности, я соорудил вот такой «мини-стенд»:


Рисунок 3 - Площадка для тестирования датчика тока

Первым делом я решил подать на датчик питание и измерить его выход, чтобы убедиться в том, что за «ноль» у него принято 1/2 Vcc . Схему подключения можно взять в даташите, я же, желая лишь ознакомиться, не стал тратить время и лепить фильтрующий конденсатор по питанию + RC цепочку ФНЧ на выводе Vout. В реальном же устройстве без них никуда! Получил в итоге такую картинку:


Рисунок 4 - Результат измерения «нуля»

При подаче питания с моей платки STM32VL-Discovery я увидел вот такие результаты - 2.38В . Первый же вопрос, который возник: "Почему 2,38, а не описанные в даташите 2.5? " Вопрос отпал практически мгновенно - измерил я шину питания на отладке, а там 4.76-4.77В. А дело все в том, что питание идет с USB, там уже 5В, после USB стоит линейный стабилизатор LM7805, а это явно не LDO с 40 мВ падением. Вот на нем это 250 мВ примерно и падают. Ну да ладно, это не критично, главное знать, что «ноль» это 2.38В. Именно эту константу я буду вычитать при обработке данных с АЦП.

А теперь проведем первое измерение, пока лишь с помощью осциллографа. Измерять буду ток КЗ моего регулируемого блока питания, он равен 3.06А . Это и встроенный амперметр показывает и флюка такой же результат дала. Ну что же, подключаем выходы БП к ногам 4 и 5 датчика (на фото у меня витуха брошена) и смотрим, что получилось:


Рисунок 5 - Измерение тока короткого замыкания БП

Как мы видим, напряжение на Vout увеличилось с 2.38В до 2.44В . Если посмотреть на зависимость выше, то у нас должно было получиться 2.38В + 3.06А*0.02В/А , что соответствует значению 2.44В. Результат соответствует ожиданиям, при токе 3А мы получили прибавку к «нулю» равную 60 мВ . Вывод - датчик работает, можно уже работать с ним с помощью МК.

Теперь необходимо подключить датчик тока с одному из выводов АЦП на микроконтроллере STM32F100RBT6. Сам камушек очень посредственный, системная частота всего 24 МГц, но данная платка у меня пережила очень много и зарекомендовала себя. Владею ею уже, наверное, лет 5, ибо была получена нахаляву во времена, когда ST их раздавали направо и налево.

Сначала по привычке я хотел после датчика поставить ОУ с коэф. усиления «1», но, глянув на структурную схему, понял, что он внутри уже стоит. Единственное стоит учесть, что при максимальном токе выходное питание будет равно питанию датчика Vcc, то есть около 5В, а STM умеет измерять от 0 до 3.3В, так что необходимо в таком случае поставить делитель напряжения резистивный, например, 1:1,5 или 1:2. У меня же ток мизерный, поэтому пренебрегу пока этим моментом. Выглядит мое тестовое устройство примерно так:


Рисунок 6 - Собираем наш «амперметр»

Также для визуализации результатов прикрутил китайский дисплей на контроллере ILI9341, благо валялся под рукой, а руки до него никак не доходили. Чтобы написать для него полноценную библиотеку, убил пару часов и чашку кофе, благо даташит на удивление оказался информативным, что редкость для поделок сыновей Джеки Чана.

Теперь необходимо написать функцию для измерения Vout с помощью АЦП микроконтроллера. Рассказывать подробно не буду, по STM32 уже и так море информации и уроков. Так что просто смотрим:

Uint16_t get_adc_value() { ADC_SoftwareStartConvCmd(ADC1, ENABLE); while(ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET); return ADC_GetConversionValue(ADC1); }
Далее, чтобы получить результаты измерения АЦП в исполняемом коде основного тела или прерывания, надо прописать следующее:

Data_adc = get_adc_value();
Предварительно объявив переменную data_adc:

Extern uint16_t data_adc;
В итоге мы получаем переменную data_adc, которая принимает значение от 0 до 4095, т.к. АЦП в STM32 идет 12 битный. Далее нам необходимо превратить полученный результат «в попугаях» в более привычный для нас вид, то есть в амперы. Поэтому необходимо для начала посчитать цену деления. После стабилизатора на шине 3.3В у меня осциллограф показал 3.17В, не стал разбираться, с чем это связано. Поэтому, разделив 3.17В на 4095, мы получим значение 0.000774В - это и есть цена деления. То есть получив с АЦП результат, например, 2711 я просто домножу его на 0.000774В и получу 2.09В.

В нашей же задачи напряжение лишь «посредник», его нам еще необходимо перевести в амперы. Для этого нам надо вычесть из результата 2.38В, а остаток поделить на 0.02 [В/А]. Получилась вот такая формула:

Float I_out = ((((float)data_adc * presc)-2.38)/0.02);
Ну что же, пора залить прошивку в микроконтроллер и посмотреть результаты:


Рисунок 7 - Результаты измерения данных с датчика и их обработка

Измерил собственное потребление схемы как видно 230 мА. Измерив тоже самое поверенной флюкой, оказалось, что потребление 201 мА. Ну что же - точность в один знак после запятой это уже очень круто. Объясню, почему… Диапазон измеряемого тока 0..100А, то есть точность до 1А это 1%, а точность до десятых ампера это уже 0,1%! И прошу заметить, это без каких либо схемотехнических решений. Я даже поленился повесить фильтрующие кондеры по питанию.

Теперь необходимо замерить ток короткого замыкания (КЗ) моего источника питания. Выкручиваю ручку на максимум и получаю следующую картину:


Рисунок 8 - Измерения тока КЗ

Ну и собственно показания на самом источнике с его родным амперметром:


Рисунок 9 - Значение на шкале БП

На самом деле там показывало 3.09А, но пока я фотографировал, витуха нагрелась, и ее сопротивление выросло, а ток, соответственно, упал, но это не так страшно.

В заключение даже и не знаю, чего сказать. Надеюсь, моя статья хоть как-то поможет начинающим радиолюбителям в их нелегком пути. Возможно, кому-то понравится моя форма изложения материала, тогда могу продолжить периодически писать о работе с различными компонентами. Свои пожелания по тематике можно высказать в комментариях, я постараюсь учесть.

Бывает надобность отследить наличие протекающего в цепи тока в двух состояниях: либо есть, либо нет. Пример: вы заряжает аккумулятор со встроенным контроллером зарядки, подключили к источнику питания, а как контролировать процесс? Можно конечно же включить в цепь амперметр скажете вы, и будете правы. Но постоянно это делать не будешь. Проще один раз встроить в блок питания индикатор протекания заряда, который будет показывать – идет ли ток в аккумулятор или нет.
Ещё пример. Допустим есть какая-то лампа накаливания в автомобиле, которую вы не видите и не знаете горит она или перегорела. В цепь к этой лампе можно так же включить индикатор тока и контролировать протекание. Если лампа перегорит – это будет сразу видно.
Или же есть некий датчик с нитью накала. Тапа газового или датчика кислорода. И вам нужно точно знать, что нить накала не оборвалась и все исправно работает. Тут и придет на помощь индикатор, схему которого я приведу ниже.
Применений может быть масса, основная конечно идея одна – контроль наличия тока.

Схема индикатора тока

Схема очень простая. Резистор со звездочкой подбирается в зависимости от контролируемого тока, он может быть от 0,4 до 10 Ом. Для зарядки литии ионного аккумулятора я брал 4,7 Ом. Через этот резистор протекает ток (если протекает), по закону Ома на нем выделяется напряжение, которое открывает транзистор. В результате загорается светодиод, индицирующий идущую зарядку. Как только аккумулятор зарядиться, внутренний контроллер отключит батарею, ток в цепи пропадет. Транзистор закроется и светодиод погаснет, тем самым давая понять, что зарядка завершена.
Диод VD1 ограничивает напряжение до 0,6 В. Можно взять любой, на ток от 1 А. Опять же, все зависит от вашей нагрузки. Но нельзя брать диод Шоттки, так как у него слишком маленькое падение – транзистор попросту может не открыться от 0,4 В. Через такую схему можно даже заряжать автомобильные аккумуляторы, главное диод выбрать с током выше, тока желаемой зарядки.


В данном примере светодиод включается во время прохождения тока, а если нужно показывать, когда нет тока? На этот случай есть схема с обратной логикой работы.


Все тоже самое, только добавляется инвертирующий ключ на одном транзисторе такой же марки. Кстати транзистор любой этой же структуры. Подойдет отечественный аналоги – КТ315, КТ3102.
Параллельно резистору со светодиодом можно включить зуммер, и когда при контроле, скажем лампочки, тока не будет – раздастся звуковой сигнал. Что будет очень удобны, и не придаться выводить светодиод не панель управления.
В общем, задумок может быть много, где использовать данный индикатор.

Для замера больших токов, как правило, применяют бесконтактный метод, — особыми токовыми клещам. Токовые клещи – измерительное устройство, имеющее раздвижное кольцо, которым охватывают электропровод и на индикаторе прибора отображается величина протекающего тока.

Превосходство подобного метода бесспорно, — чтобы замерить силу тока нет нужды разрывать провод, что в особенности немаловажно при измерении больших токов. В данной статье приводится описание токовые клещи постоянного тока , которые вполне возможно сделать своими руками.

Описание конструкции самодельных токовых клещей

Для сборки устройства понадобится чувствительный датчик Холла, к примеру, UGN3503. На рисунке 1 изображено устройство самодельной клещи. Необходим, как уже сказано, датчик Холла, а так же, кольцо ферритовое диаметром от 20 до 25 мм и крупный «крокодил», к примеру, подобный как на проводах для запуска (прикуривания) автомобиля.

Ферритовое кольцо необходимо точно и аккуратно распилить либо разломить на 2-е половинки. Для этого ферритовое кольцо необходимо сначала подпилить алмазным надфилем или пилкой для ампул. Далее, поверхности разлома ошкурить мелкой шкуркой.

С одной стороны на первую половинку ферритового кольца приклеить прокладку из чертежного ватман. С другой стороны на другую половинку кольца наклеить датчик Холла. Приклеивать лучше всего эпоксидным клеем, только нужно проследить, чтобы датчик Холла хорошо прилегал к зоне разлома кольца.

Следующий шаг – соединяем обе половинки кольца и обхватываем его «крокодилом» и приклеиваем. Теперь при нажатии на ручки «крокодила» ферритовое кольцо будет расходиться.

Электронная схема токовых клещей

Принципиальная электрическая схема приставки к мультиметру изображена на рисунке 2. При протекании тока по электропроводу, вокруг него появляется магнитное поле, и датчик Холла фиксирует силовые линии, проходящие через него, и формирует некоторое постоянное напряжение на выходе.

Данное напряжение усиливается (по мощности) ОУ А1 и идет на выводы мультиметра. Соотношение напряжения на выходе от протекающего тока: 1 Ампер = 1 мВольт. Подстроечные сопротивления R3 и R6 — многооборотные. Для настройки необходим лабораторный блок питания с минимальным током на выходе около 3А, и встроенным амперметром.

Сперва подсоедините данную приставку к мультиметру и выставьте её на нуль путем изменения сопротивления R3 и среднем положении R2. Далее, перед любым измерением необходимо будет выставлять ноль потенциометром R2. Выставьте на блоке питания наименьшее напряжение и подсоедините к нему большую нагрузку, например, электролампу, применяемую в фарах автомобиля. Затем на один из проводов, подсоединенный к данной лампе, зацепите «клещи» (рисунок 1).

Повышайте напряжение, до тех пор, пока амперметр блока питания не покажет 2 ампера. Подкрутите сопротивление R6 так, чтобы величина напряжения мультиметра (в милливольтах) соответствовала данным амперметра блока питания в амперах. Еще несколько раз проконтролируйте показания, меняя силу тока. Посредством этой приставки возможно мерить ток до 500А.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «postavuchet.ru» — Автомобильный сайт