Как из каучука получают резину. Что такое резина: из чего делают, сферы применения


Резина (от лат. resina - смола) (вулканизат), эластичный материал, образующийся в результате натурального и синтетических каучуков. Представляет собой сетчатый эластомер - продукт поперечного сшивания каучуков химическими связями.

Получение резины

Резину получают главным образом вулканизацией композиций (резиновых смесей), основу которых (обычно 20-60% по массе) составляют каучуки. Другие компоненты резиновых смесей - вулканизующие агенты, ускорители и активаторы вулканизации (см. ), противо-старители, (мягчители). В состав смесей могут также входить регенерат (пластичный продукт регенерации резины , способный к повторной вулканизации), замедлители , модификаторы, душистые вещества и другие ингредиенты, общее число которых может достигать 20 и более. Выбор каучука и состава определяется назначением, условиями эксплуатации и техническими требованиями к изделию, технологией производства, экономическими и другими соображениями (см. , ).

Технология производства изделий из резины включает каучука с ингредиентами в смесителях или на вальцах, изготовление полуфабрикатов (шприцеванных профилей, каландрованных листов, прорезиненных тканей, корда и т.п.), резку и раскрой полуфабрикатов, сборку заготовок изделия сложной конструкции или конфигурации с применением специального сборочного оборудования и вулканизацию изделий в аппаратах периодического (прессы, котлы, автоклавы, форматоры-вулканизаторы и др.) или непрерывного действия (тоннельные, барабанные и др. вулканизаторы). При этом используется высокая резиновых смесей, благодаря которой им придается форма будущего изделия, закрепляемая в результате вулканизации. Широко применяют формование в вулканизационном прессе и , при которых формование и вулканизацию изделий совмещают в одной операции. Перспективны использование порошкообразных каучуков и композиций и получение литьевых резин методами жидкого формования из композиций на основе . При смесей, содержащих 30-50% по массе S в расчете на каучук, получают .

Свойства резины

Резину можно рассматривать как сшитую , в которой каучук составляет дисперсионную среду, а - дисперсную фазу. Важнейшее свойство резины - высокая эластичность, т.е. способность к большим обратимым в широком интервале температур (см. ).

Резина сочетает в себе свойства (упругость, стабильность формы), (аморфность, высокая деформируемость при малом объемном сжатии) и (повышение упругости вулканизационных сеток с ростом температуры, энтропийная природа упругости).

Резина - сравнительно мягкий, практически несжимаемый материал. Комплекс ее свойств определяется в первую очередь типом каучука (см. табл. 1); cвойства могут существенно изменяться при комбинировании каучуков различных типов или их модификации.

Модуль упругости резин различных типов при малых деформациях составляет 1-10 МПа, что на 4-5 порядков ниже, чем для стали; коэффициент Пауссона близок к 0,5. Упругие свойства резины нелинейны и носят резко выраженный релаксационный характер: зависят от режима нагружения, величины, времени, скорости (или частоты), повторности деформаций и температуры. Деформация обратимого растяжения резины может достигать 500-1000%.

Нижний предел температурного диапазона высокоэластичности резины обусловлен главным образом температурой стеклования каучуков, а для кристаллизующихся каучуков зависит также от температуры и скорости . Верхний температурный предел эксплуатации резины связан с термической стойкостью каучуков и поперечных химических связей, образующихся при вулканизации. Ненаполненные резины на основе некристаллизующихся каучуков имеют низкую . Применение активных наполнителей (высокодисперсных , SiO 2 и др.) позволяет на порядок повысить прочностные характеристики резины и достичь уровня показателей резины из кристаллизующихся каучуков. резины определяется содержанием в ней наполнителей и пластификаторов, а также степенью вулканизации. Плотность резины рассчитывают как средневзвешенное по объему значение плотностей отдельных компонентов. Аналогичным образом могут быть приближенно вычислены (при объемном наполнении менее 30%) теплофизические характеристики резины : коэффициент термического расширения, удельная объемная теплоемкость, коэффициент теплопроводности. Циклическое деформирование резины сопровождается упругим гистерезисом, что обусловливает их хорошие амортизационные свойства. Резины характеризуются также высокими фрикционными свойствами, износостойкостью, сопротивлением раздиру и утомлению, тепло- и звукоизоляционными свойствами. Они диамагнетики и хорошие диэлектрики, хотя могут быть получены токопроводящие и магнитные резины .

Резины незначительно поглощают воду и ограниченно набухают в органических растворителях. Степень набухания определяется разницей параметров растворимости каучука и растворителя (тем меньше, чем выше эта разность) и степенью поперечного сшивания (величину равновесного набухания обычно используют для определения степени поперечного сшивания). Известны резины , характеризующиеся масло-, бензо-, водо-, паро- и термостойкостью, стойкостью к действию химически агрессивных сред, озона, света, ионизирующих излучений. При длительном хранении и эксплуатации резины подвергаются старению и утомлению, приводящим к ухудшению их механических свойств, снижению прочности и разрушению. Срок службы резины в зависимости от условий эксплуатации от нескольких дней до нескольких десятков лет.

Классификация резин

По назначению различают следующие основные группы резин : общего назначения, теплостойкие, морозостойкие, маслобензостойкие, стойкие к действию химически агрессивных сред, диэлектрические, электропроводящие, магнитные, огнестойкие, радиационностойкие, вакуумные, фрикционные, пищевого и медицинского назначения, для условий тропического климата и др. (табл. 2); получают также пористые, или губчатые (см. ), цветные и прозрачные резины .

Применение резины

Резины широко используют в технике, сельском хозяйстве, быту, медицине, строительстве, спорте. Ассортимент резиновых изделий насчитывает более 60 тыс. наименований. Среди них: шины, транспортные ленты, приводные ремни, рукава, амортизаторы, уплотнители, сальники, манжеты, кольца и др., кабельные изделия, обувь, ковры, трубки, покрытия и облицовочные материалы, прорезиненные ткани, герметики и др. Более половины объема вырабатываемой резины используется в производстве шин.

Ассортимент современных автомобильных покрышек очень разнообразен. Производители в стремлении привлечь часть покупателей разрабатывают все новые и новые технологические моменты, позволяющие чем-то выделить свой продукт и показать лучшие технические характеристики. Однако первоначальный состав автомобильных шин все же неизменен и ее основной компонент практически для всех моделей одинаков. Для того, чтобы узнать это, необходимо рассмотреть подробнее, из чего делают резину.

Основное составляющее вещество

Любое изделие из резины имеет в своем составе каучук – эластичное вещество, которое может быть либо природного, либо искусственного происхождения. Натуральный каучук – это застывший сок каучуковых деревьев. Он имеет большую ценность, так как он является основой, из чего изготовлена автомобильная шина. Кроме натурального, применяется еще и искусственный каучук, который намного дешевле в производстве. Также в состав любых автомобильных покрышек входит сажа (технический углерод).

Основное предназначение сажи – укрепляющие свойства. Она влияет на следующие характеристики резины: долговечность, прочность, износостойкость. Со временем резина всегда тускнеет и тогда в целях улучшения внешнего вида применяется чернитель шин. Также в целях удешевления производства используют кремниевую кислоту, которая улучшает сцепление колес с влажным покрытием, при этом снижается общий ресурс шины.

Что касается состава, то вся автомобильная резина всегда содержит эти основные компоненты, а различия обеспечивают разнообразные присадки и добавки, которые в общем случае улучшают следующие характеристики:

  • Снижение трения качения и увеличение скоростных характеристик;
  • Устойчивость к истиранию ;
  • Повышение сцепления с дорожной поверхностью.

Технология создания автомобильной резины

Летние и зимние покрышки, как известно, отличаются своей жесткостью. Чтобы автомобильная шина стала более жесткой и устойчивой к истиранию, для нее используют искусственный каучук. Зимние покрышки, напротив, изготавливают из натурального каучука, который не позволяет покрышкам «дубеть» на морозе. Конечно, можно при помощи специальных смол и добавок добиться схожего эффекта с ненатуральным материалом, но они по своим характеристикам никогда не догонят натуральный продукт. К тому же износ шин будет более быстрым.

Сам процесс изготовления резиновых покрышек довольно долгий и трудоемкий. Вначале собранный сок каучуковых деревьев помещают в большие ванны с кислотой на несколько часов для того, чтобы он затвердел. Полученный материал называется латексом. Из него убирают лишнюю воду и пропускают через валы для получения широкой плоской ленты, которая затем измельчается и в результате образуется легкая воздушная масса, которую после обжига превращают в блоки.

После этого блоки помещаются в специальный котел, в который добавляются различные дополнительные компоненты. Именно они придают автомобильной резине различия в характеристиках. Пропорции и количество добавок являются собственной разработкой компаний-производителей и именно в этом заключается все различие в многообразии шин. При этом покрышку, по сути, производитель сделал из единственного исходного материала, подобно тому, как торт, по сути, сделан из муки. Однако многочисленные разработки, исследования и засекреченные элементы позволяют при равной себестоимости обойти конкурентов по потребительским характеристикам.

Смесь резиновых блоков и добавок перемешивается и разогревается, в результате чего она превращается в настоящую резину. Ее вторично раскатывают на полосы, а затем дают остыть.

Изготовление покрышек


Основной материал, из чего делают шины – не только резина. Внутри у нее находится проволочный каркас, состоящий из множества нитей. Он может быть текстильным, металлическим или полимерным. Корд сплетается по типу ткани, а затем при помощи экструдера производится его обрезинивание. Затем каркас при помощи специальных машин раскатывается на полосы разной ширины для получения протектора необходимой размерности. Требуемый рисунок протектора получают также методом экструзии (продавливания).

Боковины будущей покрышки изготавливается схожим образом: формируется каркас, на него наносятся слои резины, затем лишняя проволока обрезается и формируется кольцеобразная заготовка разного размера (зависит от диаметра колес), к которым затем присоединяются кольца брекетов (выступов по краю боковин, которые удерживают покрышку на ободе).

Готовые боковины затем на специальном станке собираются воедино с протекторной лентой. Станок соединяет все части шины и накачивает ее изнутри для придания ей формы. Получаемые заготовки подвергаются вулканизации, в результате чего они превращаются в единое целое, а затем обрабатывают горячим паром под давлением. Завершающим этапом становится нанесение на боковины покрышки технологических надписей и знаков при помощи специального пресса. После этого готовая шина проходит проверку на соответствие необходимым условиям и требованиям.

Таким образом, изготовление автомобильных покрышек состоит из нескольких достаточно сложных этапов, требующих серьезного технологического оснащения. Становится понятно, почему на каждом этапе требуются качественные процедуры обработки, ведь конечный продукт зависит от характеристик исходных материалов, пропорций добавляемых веществ и компонентов. Производители не стоят на месте и постоянно разрабатывают новые модели покрышек, поэтому при покупке новинок стоит более подробно ознакомиться с их характеристиками и проверить соответствие заявленных параметров реальным показателям.

Резина — продукт вулканизации композиции, содержащей связующее вещество — натуральный или синтетический каучук.
В конструкции современных автомобилей используют несколько сот изделий, выполненных из резины. Это шины, камеры, шланги, уплотнители, герметики, детали для электро- и виброизоляции, приводные ремни и т. д. Их масса составляет до 10 % от общей массы автомобиля.
Широкое применение резиновых изделий в автомобилестроении объясняется их уникальными свойствами:
. эластичностью;
. способностью поглощать ударные нагрузки и вибрацию;
. низкой теплопроводностью и звукопроводностью;
. высокой механической прочностью;
. высокой сопротивляемостью к истиранию;
. высокой электроизоляционной способностью;
. газо- и водонепроницаемостью;
. устойчивостью к агрессивным средам;
. низкой плотностью.
Основное свойство резины — обратимая эластичная деформация — способность многократно изменять свою форму и размеры без разрушения под воздействием сравнительно небольшой внешней нагрузки и вновь возвращаться в первоначальное состояние после снятия этой нагрузки.
Подобным свойством не обладают ни металлы, ни древесина, ни полимеры.
На рис. 1 приведена классификация резины .
Резину получают вулканизацией резиновой смеси, в состав которой входят:
. каучук;
. вулканизирующие агенты;
. ускорители вулканизации;
. активаторы;
. противостарители;
. активные наполнители или усилители;
. неактивные наполнители;
. красители;
. ингредиенты специального назначения.



Рис. 1. .Классификация резин .

Натуральный каучук — природный полимер, представляющий собой непредельный углеводород — изопрен (С5Н8)n.
Натуральный каучук добывают главным образом из млечного сока (латекса) каучуконосных растений, в основном из бразильской гевеи, в котором его содержится до 40 %.
Для выделения каучука латекс обрабатывают уксусной кислотой, под действием которой он свертывается, и каучук легко отделяется. Затем его промывают водой, прокатывают в листы, сушат и коптят для устойчивости против окисления и действия микроорганизмов.
Производство натурального каучука (НК) требует больших затрат и не покрывает промышленных потребностей. Поэтому наибольшее распространение получил синтетический каучук (СК). Свойства СК зависят от строения и состава.
Изопреновый каучук (обозначается СКИ) по своему составу и строению близок к натуральному каучуку, по некоторым показателям уступает ему, а по каким-то превосходит. Резина на основе СКИ отличается газонепроницаемостью, достаточной стойкостью против воздействия многих органических растворителей, масел. Существенные его недостатки — низкая прочность при высоких температурах и низкая озоно- и атмосферостойкость.
Бутадиен-стирольный (СКС) и бутадиен-метилстирольный (СКМС) СК наиболее широко используются в автомобилестроении. Резины на основе этих каучуков имеют хорошие прочностные свойства, высокое сопротивление изнашиванию, газонепроницаемость, морозо- и влагостойкость, однако нестойки при воздействии озона, топлива и масел.
Резина на базе бутадиенового каучука (СКД) эластична, износостойка, имеет хорошие физико-механические свойства при низких температурах, однако существуют трудности при переработке резиновых смесей. Она имеет недостаточно прочную связь с металлокордом при производстве армированных изделий.
Из СК специального назначения бутадиен-нитрильный (СКН) каучук отличается высокой бензомаслостойкостью, сохраняет свои свойства в широком интервале температур, обеспечивает прочную связь с металлами, поэтому применяется для изготовления металлорезиновых изделий, работающих в контакте с нефтепродуктами. Недостаток — быстрое старение.
Резины на основе фторкаучука (СКФ) и акрилатного каучука (АК) обладают очень высокими прочностными свойствами, стойки к воздействию топлив, масел, многих других веществ, высоких температур, однако низкая морозостойкость ограничивает их применение. Комплексом положительных свойств обладают силиконовые каучуки.
Молекулы СК являются полимерными цепями с небольшим числом боковых ответвлений. При нагревании с некоторыми вулканизирующими веществами между молекулами каучука образуются химические связи — «мостики», что резко изменяет механические свойства смеси. Чаще всего в качестве вулканизирующего ингредиента используют серу (1—3 %).
Для ускорения вулканизации в резиновую смесь добавляют ускорители и активаторы.
Чрезвычайно важным ингредиентом резины являются наполнители. Активные наполнители резко усиливают прочностные свойства резины. Чаще всего роль активного наполнителя выполняет технический углерод (сажа). Введение технического углерода делает резину более прочной, повышает износостойкость, упругость, твердость. Неактивные наполнители (мел, асбестовая мука и др.) служат для увеличения объема резиновой смеси, что удешевляет изготовление резины, но ее физико-механических свойств не улучшают (некоторые наполнители даже ухудшают).
Пластификаторы (мягчители) облегчают приготовление резиновой смеси, формование изделий, а также улучшают эластичность резины при низких температурах. В качестве пластификаторов используют высококипящие фракции нефти, каменноугольную смолу, растительные масла, канифоль, синтетические смолы. Для замедления процессов старения резины и увеличения ее ресурса в состав резиновой смеси вводят противостарители (антиокислители, стабилизаторы).
Особая роль отводится армирующим наполнителям. Они не входят в состав резиновой смеси, а вводятся на стадии формования изделия. Текстильная или металлическая арматура снижает нагрузку на резиновое изделие, ограничивает его деформацию. Изготавливают такие армированные резиновые изделия, как шланги, приводные ремни, ленты, автопокрышки, где для усиления прочности используют текстильный и металлический корды.
Подбором соответствующих каучуков, рецептуры резиновой смеси, условий вулканизации создают материалы, имеющие определенные свойства, что позволяет получать изделия, обладающие различными эксплуатационными свойствами, причем устойчиво сохраняющие свои качества продолжительное время и обеспечивающие функциональное назначение деталей и работоспособность узлов и агрегатов.
Из отработавших резинотехнических изделий изготовляют по специальной технологии регенерат, который добавляют в резиновую смесь в качестве заменителя части каучука. Однако резина, в состав которой входит регенерат, не отличается хорошими эксплуатационными свойствами, а потому из нее изготовляют изделия (коврики, ободные ленты), к которым не предъявляют высоких технических требований.

Технология производства шин начинается с ее разработки посредством специальной компьютерной программы рисующей различные модификации протектора и профиля шины. С помощью программы просчитывается поведение каждого из вариантов покрышки на дороге в различных ситуациях. После чего, те из шин, которые показали наилучшие результаты в моделированных дорожных тестах, нарезаются вручную на станке и проходят тестирования в реальных дорожных условиях. Затем технические показатели каждой тестируемой шины сравниваются с лучшими показателями уже существующих покрышек аналогичного класса, по необходимости проходят доводку и запускаются изделие в серийное производство.

Этапы производства автомобильных шин

1. Производство резиновой смеси

Первый этап создания любой покрышки заключается в изготовлении резиновой смеси, состав которой у каждой компании-производителя индивидуальный и хранимый в строгом секрете. Обусловливается это тем, что именно от качества резины шины зависят такие ее технические характеристики, как:

  • уровень сцепления с дорожным полотном;
  • надежность;
  • рабочий ресурс.

Сырье и расходные материалы

Технология производства шин требует наличия множества различных компонентов, материалов и химических соединений без которых невозможно само существование автомобильных покрышек. В данной статье мы перечислим лишь самые основные из этих компонентов.

Все это достигается благодаря работе химиков, подбирающих, комбинирующих компоненты и их содержание в резине в соответствии с собственным опытом и компьютерными данными. Как правило, именно от правильной дозировки компонентов зависит качество резины, так как ее состав ни для кого не секрет и включает в себя следующие компоненты:

  • каучук, составляющий основу резиновой смеси, который может быть как синтетическим, так и более дорогостоящим изопреновым. Как показывает практика, российский каучук считается лучшим в мире и по сей день используется самыми известными иностранными компаниями-производителями для изготовления своей продукции;
  • промышленная сажа, она же технический углерод, придающая резине характерный цвет, и отвечающая за ее прочность и износостойкость, так как именно сажа выполняет молекулярное соединение в процессе вулканизации;
  • кремниевая кислота, являющаяся аналогом сажи в изготовлении шин зарубежными производителями и повышающая уровень сцепления покрышки с мокрым дорожным полотном;
  • масла и смолы, являющиеся вспомогательными компонентами и выполняющими роль смягчителей резины.
  • вулканизирующие агенты, в частности сера и вулканизационные активаторы.

2.

Производство компонентов шины

Технология производства шин предусматривает такой этап производства как изготовление компонентов шины, представляющий собой несколько таких параллельных процессов как:

3. Сборка автомобильной покрышки и вулканизация

Сборка шины является третьим этапом производства и выполняется на сборочном барабане методом последовательного наложения поверх друг друга слоев каркаса, борта и протектора с боковинами шины, после чего следует процедура вулканизации.

Технология производства автомобильных шин, видео-обзор:

Другие похожие статьи на Технология производства автомобильных шин

Производство формовых РТИ осуществляется на оборудовании для прессования, с помощью которого вулканизированную резину преобразовывают в детали.

Гидравлический пресс является основным типом оборудования для изготовления деталей из резины. Принцип действия гидравлического пресса состоит в том, что жидкость, находящаяся под давлением и заключенная в замкнутый сосуд, оказывает одинаковое давление на стенки сосуда.

Попадая в рабочий цилиндр пресса, и заполняя его, жидкость с одинаковой силой давит на дно цилиндра, его стенки, а также на торцевую поверхность плунжера, вставленного в цилиндр.

Гидравлические прессы для РТИ представляют собой оборудование, в котором рабочий процесс осуществляется благодаря жидкости, находящейся под давлением.

Изделия, изготовленные формовым способом широко используются на приборо- и машиностроительных предприятиях, где постоянно производится вырезка деталей из сырой и листовой резины, которая подвергается вулканизации и прессованию.

Процесс иготовления НА ГИДРАВЛИЧЕСКИХ ПРЕССАХ.

  1. Сначала осуществляется подготовка к работе, т.е. пресс-формы подвергают нагреву до 150 ± 5°, а затем они смазываются специальным раствором.
  2. После сушки и смазывания пресс-форма готова к укладке арматуры и сырой резины. Если во время прессования задействованы открытые пресс-формы, то арматура помещается в гнёзда, а резина занимает оставшееся место. При использовании литьевых форм, арматура по-прежнему укладывается в них, а для сырой резины отведена загрузочная камера.
  3. Для прессования армированных деталей необходимо удельное давление в 50-60 МПа, для не армированных достаточно - 25-30 МПа.
  4. Вулканизация заключается в выдержке резиновой заготовки и арматуры на прессе на протяжении 0,5-1 ч, при этом температура должна быть не меньше 145 ± 3°. Её продолжительность, а также рабочую температуру необходимо подобрать опытным или экспериментальным путём, так как эти величины зависят от конфигурации и толщины стенок детали, а также марки обрабатываемой резины.
  5. Завершив операцию вулканизации необходимо снять пресс-форму с пресса, разобрать, вынуть готовую деталь, почистить рабочую оснастку, поместить в неё новую арматуру с сырой резиной для изготовления следующей детали.
  6. Для обрезки образовавшегося облоя используются специальные ножницы или просечки. Обязательно все детали проверяются специалистами отдела технического контроля (ОТК).

Что такое каучук

Кроме сложных веществ наподобие полиэтиленов, представляющих из себя высокомолекулярные полимеры, существует класс химических веществ, который образован сопряжёнными диенами.

После процесса полимеризации диенов образуются новые химические вещества, имеющие высокомолекулярную структуру, называемые каучуками .

Каучук был уже известен в конце 15 веке в северной Америке. Именно индейцы в то время использовали его для изготовления обуви, небьющихся вещей и посуды. А получали тогда его из сока растения гевеи, который называли – «слёзы дерева».

Что касается европейцев, то о каучуке узнали впервые только в момент открытия Америки. Именно Кристофор Колумб первым узнал о его свойствах и получении. В Европе каучук долгое время не мог найти себе применение. В 1823 г в первые было предложено использование этого материала для изготовления водонепроницаемых плащей и одежды. Каучуком и органическим растворителем пропитывали ткань, таким образом, ткань приобретала водостойкие свойства. Но, конечно же, был замечен и недостаток, который заключался в том, что ткань, пропитанная каучуком, прилипала в жаркую погоду к коже, а при морозе – растрескивалась.

Отличие каучука и резины

Через 10 лет после первого применения натурального каучука и более детального изучения его химических физических свойств было предложено вводить каучук в оксиды кальция и магния. А ещё через 5 лет после изучения свойств нагретой смеси оксидов свинца и серы с каучуком научились получать резину . Сам процесс превращения каучука в резину назвали вулканизацией .

Конечно же, каучук отличается от резины .

Резина – это «сшиты» полимер, который способен распрямляться и снова сворачиваться при растяжении и при действии механической нагрузки. Резина – это также «сшитые» макромолекулы, которые не способы к кристаллизации при охлаждении и не плавятся при нагревании. Тем самым резина – более универсальный материал, чем каучук, и способен сохранять свой механические и физические свойства про более широком диапазоне температур.

В начале 20 века, когда появился первый автомобиль, спрос на резину значительно возрос. В то же время возрос спрос и на натуральный каучук , так как на тот момент вся резина изготавливалась из сока тропических деревьев. Например, чтобы получить тонну резины, необходимо было обработать почти 3 тонны тропических деревьев, при этом работой было занято одновременно более 5 тысяч человек, причём такую массу резины могли получить только через год.

Поэтому, резина и натуральный каучук считались достаточно дорогим материалом.

Только в конце 20х годов русским учёным Лебедевым С.В. при химической реакции — полимеризации бутадиена-1,3 на натриевом катализаторе были получены образцы первого натрий-бутадиенового синтетического каучука.

Кстати, из курса физики 8-ого класса мы, вероятно, впервые познакомились с эбонитовой палочкой . Но что такое эбонит . Как оказывается, эбонит — это производная от процесса вулканизации каучука : если при вулканизации каучука добавить серу (около 32% от массы), то в результате получается твёрдый материал — этот материал и есть эбонит !

Одним из достаточно дешёвых способов получения бутадиена-1,3, является его получение из этилового спирта. Но только в 30-х годах было налажено промышленное производство каучука в России.

В середине 30-х годов 20 века научились производить сополимеры, представляющие полимеризованный 1,3-бутадиен. Химическая реакция производилась в присутствии стирола или некоторых других химических веществ. Вскоре получаемые сополимеры начали с большими темпами вытеснять каучуки, которые ранее широко использовались для производства шин. Каучук бутадиен-стирольный получил широкое применение для производства шин легковых автомобилей, но для тяжёлого транспорта — грузовых автомобилей и самолётов, использовался натуральный каучук (или изопреновый синтетический).

В середине 20 века после получения нового катализатора Циглера - Натты был получен синтетический каучук , который по своим свойствам эластичности и прочности значительно выше, чем все ранее известные каучуки, — был получен полибутадиен и полиизопрен. Но как оказалось, к общему удивлению полученный синтетический каучук по своим свойствам и строению подобен натуральному каучуку! А к концу 20 века натуральный каучук был почти полностью вытеснен синтетическим.

Свойства каучука

Все хорошо знают, что при нагревании материалы способны расширяться. В физике даже имеются коэффициенты температурного расширения, для каждого взятого материала этот коэффициент свой. Расширению поддаются твёрдые тела, газы, жидкости. Но что, если температура увеличилась на несколько десятков градусов?! Для твёрдых тел изменений мы не почувствуем (хотя они есть!). Что касается высокомолекулярных соединений, например полимеров, их изменение сразу становится заметным, особенно если речь идёт об эластичных полимерах, способных хорошо тянуться. Заметным, да ещё к тому же с совсем обратным эффектом!

Ещё в начале 19 века английские учёные обнаружили, что растянутый жгут из нескольких полосок натурального каучука при нагревании уменьшался (сжимался), а вот при охлаждении — растягивался. Опыт был подтверждён в середине 19 века.

Вы сами с лёгкостью можете повторить этот опыт, подвесив на резиновую ленту грузик. Она растянется под его весом. Потом обдуйте её феном — увидите, как она сожмётся от температуры!

Почему так происходит?! К этому эффекту можно применить принцип Ле Шателье , который гласит, что если воздействовать на систему, находящуюся в равновесии, то это приведёт к изменению равновесия самой системы, а это изменение будет противодействовать внешним силовым факторам. То есть если на растянуть под действием груза жгуты каучука (система в равновесии) подействовать феном (внешнее воздействие), то система выйдет из равновесия (жгут будет сжиматься), причём сжатие — действие направлено в обратную сторону от силы тяжести груза!

При очень резком и сильном растяжении жгута он нагреется (нагрев может на ощупь быть и незаметным), после растяжения система будет стремиться принять равновесное состояние и постепенно охладится до окружающей температуры. Если жгуты каучука также резко сжать — охладится, далее будет нагреваться до равновесной температуры.

Что происходит при деформации каучука?

При проведённых исследованиях оказалось, что с точки зрения термодинамики, никакого изменения внутренней энергии при различных положениях (изгибах) этих каучуковых жгутов не происходит.

А вот если растянуть — то внутренняя энергия увеличивается из-за возрастания скорости движения молекул внутри материала. Из курса физики и термодинамики известно, что изменение скорости движения молекул материала (тот же каучук) отражается на температуре самого материала.

дальнейшем, растянутые жгуты каучука будут постепенно охлаждаться, так как движущиеся молекулы будут отдавать свою энергию, например, рукам и другим молекулам, то есть произойдёт постепенное выравнивание энергии внутри материала между молекулами (энтропия будет близка к нулю).

И вот теперь, когда наш жгут каучука принял температуру окружающей среды, можно снять нагрузку. Что при этом происходит?! В момент снятия нагрузки молекулы каучука ещё имеют низкий уровень внутренней энергии (они же ей поделились при растяжении!). Каучук сжался — с точки зрения физики была совершена работы за счёт собственной энергии, то есть своя внутренняя энергия (тепловая) была затрачена на возврат в исходное положение. Естественно ожидать, что температура должна понизится, — что и происходит на самом деле!

Резина — как уже говорилось, высокоэластичный полимер. Её структура состоит из хаотично расположенных длинных углеродным цепочек. Крепление таких цепочек между собой осуществлено с помощью атомов серы. Углеродные цепочки в нормальном состоянии находятся в скрученном виде, но если резину растянуть, то углеродные цепочки будут раскручиваться.

Можно провести интересный опыт с резиновыми жгутами и колесом. Вместо велосипедных спиц в велосипедном колесе использовать резиновые жгуты. Такое колесо подвесить, чтобы оно могло свободно вращаться. В случае, если все жгуты одинаково растянуты, то втулка в центре колеса будет расположена строго по его оси. А теперь попробуем нагреть горячим воздухом какой-нибудь участок колеса. Мы увидим, что та часть жгутов, которая нагрелась — сожмётся и сместит втулку в свою сторону. При этом произойдёт смещение центра тяжести колеса и соответственно колесо развернётся. После его смещения действию горячего воздуха подвергнутся следующие жгуты, что в свою очередь приведёт к их нагреванию и снова — к повороту колеса. Таким образом, колесо может непрерывно вращаться!

Это опыт подтверждает факт того, что при нагревании каучук и резина будут сжиматься, а при охлаждении — растянутся!

Синтетическая резина

C траница 1

Синтетические резины менее, чем естественные резины, подвержены разбуханию в присутствии масла и большинства растворителей.  

Синтетические резины широко применяют для изготовления уплотнений, препятствующих утечке масла из картеров зубчатых редукторов. Хотя иногда в спецификациях на редукторные масла содержатся требования, ограничивающие величину набухания и других повреждений для определенных марок резины, из которых изготовлены сальники, предсказать поведение этих материалов при разнообразных режимах работы практически невозможно.  

Синтетическая резина хуже естественной по сопротивляемости разрыву, но меньше набухает при соприкосновении с маслом, чем естественная.  

Синтетические резины значительно более устойчивы к действию ультрафиолетовых лучей.

Свет не оказывает заметного влияния на поверхность дерева, но продолжительная эксплуатация деталей, изготовленных из дерева, при облучении их ультрафиолетовыми лучами может привести к некоторым изменениям поверхностных слоев древесины.  

Синтетическая резина СКН-40 (бутадиеннитрильный каучук) также относится к бензостойким материалам и может применяться для облицовкл резервуаров.  

Обычные синтетические резины или смеси буна N, буна S, неопрен, бутил, каучук и натуральная резина обладают характеристиками, позволяющими изготовлять детали формовым способом с использованием стандартного оборудования. Однако разработанные совсем недавно синтетические резины, а также большинство силиконовых материалов, имеют на 3 — 5 % большую усадку, чем стандартные резины. В этих случаях О-образные кольца, отформованные из новых материалов на имеющемся оборудовании, имеют размеры на 3 — 5 % меньше, чем предусмотренные стандартом. Материалы с большой усадкой — это силиконы, витон, фтористые силиконы и полиакрилаты.  

Разрыв синтетической резины происходит значительно легче, чем естественной.  

Марка синтетической резины, которая берется для тканево-резиновых манжет, зависит от рабочей среды и температуры. Наиболее обычными базовыми полимерами являются полихлоро-прен, буна N, буна S, бутил и витон. Полихлоропрен и буна N применяются для уплотнения масел, буна S — для воды, бутил — при уплотнении сложных эфиров фосфорной кислоты. Витон используется в условиях высоких рабочих температур.  

Уплотнения из синтетических резин могут работать в масляной среде при окружных скоростях на поверхности трения до 20 м / сек. Однако применять высокие скорости и температуры без крайней необходимости не рекомендуется, так как это снижает надежность уплотнения.  

Шары из синтетической резины изготавливаются полыми. В корпусе устанавливается клапан /, через который закачивается жидкость с таким расчетом, чтобы диаметр шара превысил на 2 % внутренний диаметр трубы.  

Уплотнения из синтетических резин могут работать при окружных скоростях на поверхности трения до 20 м / сек, а в отдельных случаях и до 25 м / сек. В зависимости от сорта резины они могут быть пригодны также для работы при температурах на поверхности трения выше 150 С. Так, например, манжеты из силиконовой резины допускают при скорости 25 м / сек температуру 180 С.  

Коэффициент трения синтетической резины по металлу обычно увеличивается с увеличением скорости. От чистоты уплотняемой поверхности коэффициент трения зависит мало, но чистота поверхности существенно влияет на износ уплотнителей.  

Смесь для получения прочного упругого материала получила название сырая резина. После термической обработки изменяются молекулярные связи каучука, образуя сплав с пластификаторами. Можно своими руками в домашних условиях провести вулканизацию и сделать небольшую деталь из резины или просто заклеить пробоину в велосипедной камере, заделать порезы на скатах. В продаже есть несложное оборудование для частных мастерских, в которых делается сырая резина своими руками.

Натуральный каучук

Сок каучуконосных деревьев широко применялся аборигенами для выделки непромокаемой обуви, покрытия лодок, защиты хижин от дождя и решения других бытовых проблем. Они добывают его из каучуконосных растений аналогично сбору весной березового сока. Полиизопрен - углевод, составляющий большую часть природного латекса, - в тепле соединяется с кислородом и со временем становится хрупким. После нагрева молекулярные связи становятся устойчивыми, и вещество не реагирует даже на кислотные растворы.

Ценность каучука исходя из технических характеристик:

  • высокая стойкость к истиранию;
  • хорошие теплоизоляционные свойства;
  • не растворяется в воде и большинстве агрессивных жидкостей;
  • пластичность;
  • эластичность.

Добавление пластификаторов и речного песка позволяет создавать материал с запланированными качествами и цветом. Сырая резина превращается в изделие, долго сохраняющее свою форму, через вулканизацию - нагрев под прессом до температуры 150 градусов.

Компоненты сырой резины

Натуральный и синтетический каучук при нагреве до 50 градусов превращается в мягкую массу, которая хорошо смешивается с другими компонентами:

  • серой;
  • газовой сажей;
  • песком (диоксидом кремния);
  • маслами;
  • смолами;
  • красителями;
  • смягчителями;
  • ускорителями.

Состав компонентов меняется и зависит от качеств, которыми должна обладать полученная сырая резина. Сера входит в молекулярные соединения, и от нее зависит твердость резины. Ускорители сокращают время вулканизации. Сажа и масло придают пластичность готовому изделию. Песок и другие органические вещества делают ее тверже, уменьшают стирание, увеличивают усилие разрыва.

Виды резины

По твердости выделяют три основные ее группы:

  • мягкая - латекс;
  • средняя;
  • твердая - эбонит.

Природный компонент обладает лучшими эксплуатационными качествами, поэтому шины для автомобилей делают из натурального каучука. На небольших предприятиях изготовление резины предусматривает более дешевый синтетический материал.

Латекс идет на изготовление перчаток, игрушек, различных изоляционных материалов, непромокаемой одежды, подошвы для обуви. Резина средней плотности широко применяется в быту и на производстве. Это всевозможные прокладки в кранах, коврики, муфты в автомобилях и механизмах. Из эбонита вытачивают детали, от которых требуется высокая твердость и устойчивость к истиранию. Это элементы подшипников, колес, втулок.

Изготовление резины

Выделяют три основных неизменных этапа, если готовится сырая резина. Инструкция и технология простые, требующие несложного оборудования. Последовательно выполняются:

  • подогрев каучука;
  • смешивание с добавками;
  • формовка.

Натуральный каучук, постояв некоторое время и перебродив, превращается в густую вязкую массу. Искусственный сразу производится в таком виде. Перед применением его разминают подобно тесту и подогревают до 50 градусов. В таком состоянии он теряет свою упругость, становится податливым и мягким и способным смешиваться с другими веществами.

Компоненты будущей резины засыпают в шнековую машину для перемешивания. Пропорции и добавки берутся в зависимости от запланированных качеств. Все марки производимой сырой резины стандартизированы, и количество каждого материала указано в процентах. Остается только пересчитать в соотношении к имеющейся массе каучука.

Полученная однородная масса остается подогретой, поскольку трение о детали машины и частиц друг о друга происходит с выделением температуры. В результате процесса образуется сырая резина. Ей придают форму полос заданных размеров (реже шнура) и упаковывают между полиэтиленом.

Изготовление изделий из резины

Для изготовления изделий сырую массу после смешивания помещают в специальные формы, создают давление и нагревают до 135-150 градусов. Процесс называется вулканизацией. Для маленьких деталей это закрытые штампы. Изделия по типу ковриков могут пропускаться через горячие барабаны с фигурной поверхностью.

При длительном воздействии высоких температур резина пересыхает и становится хрупкой. Поэтому в состав вводят серу и другие ускорители, позволяющие значительно сократить процесс вулканизации.

Домашнее изготовление сырой резины

Каучук, особенно искусственный, для вымешивания требует больших усилий. Мять его руками, как тесто, у человека недостаточно сил. Для этого делается специальное приспособление. Перемешивание с добавками - трудоемкий и длительный процесс. Вещества с различной дисперсностью, удельным весом и физическим состоянием надо превратить в однородную массу.

Готовится сырая резина своими руками в машине со шнековыми валами. Винтовые выступы перетирают все, что заложено в емкость, и перемешивают. Скорость изготовления зависит от количества валов. Дома обычно он один, и надо много времени на доведение смеси до нужного состояния.

Для формовки в листы и полосы достаточно двух валов, один из которых перемещается, изменяя размер зазора, следовательно, и толщину готовой сырой резины. Масса закладывается в накопитель и поступает на формовку. При деформации она остывает и теряет способность течь, становится прочной на разрыв.

Оборудование для домашней мастерской можно приобрести в магазине или сделать самостоятельно. За образцы взять технику, имеющуюся на кухне. Двигатель подойдет от поломанной стиралки или любой другой машины. Ремни и шкивы автомобильные.

Сырая резина: применение

В домашних условиях резина широко применяется для ремонта резиновых изделий. Это покрышки и камеры велосипедов и автомобилей, обувь. С помощью вулканизации создаются прокладки в краны и различные мелкие детали

Для латок на пробитые колеса наиболее часто используется листовая сырая резина. Инструкция по применению:

  1. Края камеры в месте пореза зачистить наждачкой, чтобы они не соприкасались торцами. Рваные выступы обрезать.
  2. Обезжиривается место вокруг пореза, обрабатывается напильником.
  3. Вырезается из сырой резины латка и накладывается на камеру.
  4. Зажимается струбциной и нагревается.

Для нагрева используется готовый вулканизатор, но его можно сделать самостоятельно. В случае промышленной установки один миллиметр толщины следует греть 4 минуты. В самодельном приспособлении время увеличивается до 10 минут, более точно оно определяется практическим путем.

Изготовление приспособления для вулканизации

Самодельные вулканизаторы делятся на электрические и бензиновые. Делаются они из деталей, отслуживших свой срок. Основные узлы:

  • неподвижный стол;
  • нагревательный элемент;
  • струбцина.

Самая простая электрическая модель получается из старого утюга, в котором есть рабочая спираль. Этот вариант имеет регулятор, значит, удобнее других. Рабочая поверхность - подошва. Ручку лучше убрать, перевернуть утюг, установить на скобу из толстого листа. Сверху ложится ремонтируемое изделие и зажимается струбциной.

Для бензинового варианта использовать удобно поршень двигателя. В него наливается бензин и поджигается. Для контроля положите на латку бумагу. Она начинает желтеть на критической для резины температуре.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «postavuchet.ru» — Автомобильный сайт